Loading [MathJax]/extensions/MathZoom.js
Lattice Diagram polynomials in one set of variables
Aval, Jean-Christophe ; Bergeron, Francois ; Bergeron, Nantel
HAL, hal-00185464 / Harvested from HAL
The space $M_{\mu/i,j}$ spanned by all partial derivatives of the lattice polynomial $\Delta_{\mu/i,j}(X;Y)$ is investigated in math.CO/9809126 and many conjectures are given. Here, we prove all these conjectures for the $Y$-free component $M_{\mu/i,j}^0$ of $M_{\mu/i,j}$. In particular, we give an explicit bases for $M_{\mu/i,j}^0$ which allow us to prove directly the central {\sl four term recurrence} for these spaces.
Publié le : 2002-07-05
Classification:  [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO],  [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
@article{hal-00185464,
     author = {Aval, Jean-Christophe and Bergeron, Francois and Bergeron, Nantel},
     title = {Lattice Diagram polynomials in one set of variables},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00185464}
}
Aval, Jean-Christophe; Bergeron, Francois; Bergeron, Nantel. Lattice Diagram polynomials in one set of variables. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00185464/