Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
Bousch, Thierry ; Mairesse, Jean
HAL, hal-00165771 / Harvested from HAL
Given an Iterated Function System (IFS) of topical maps verifying some conditions, we prove that the asymptotic height optimization problems are equivalent to finding the extrema of a continuous functional, the average height, on some compact space of measures. We give general results to determine these extrema, and then apply them to two concrete problems. First, we give a new proof of the theorem that the densest heaps of two Tetris pieces are sturmian. Second, we construct an explicit counterexample to the Lagarias-Wang finiteness conjecture.
Publié le : 2002-07-05
Classification:  finiteness conjecture,  Topical maps,  max-plus automata,  Tetris,  sturmian processes,  optimal control,  finiteness conjecture.,  AMS: 49J27, 37D35,  [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM],  [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
@article{hal-00165771,
     author = {Bousch, Thierry and Mairesse, Jean},
     title = {Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00165771}
}
Bousch, Thierry; Mairesse, Jean. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00165771/