Loading [MathJax]/extensions/MathZoom.js
Uniqueness and stability in an inverse problem for the Schrödinger equation
Baudouin, Lucie ; Puel, Jean-Pierre
HAL, hal-00143868 / Harvested from HAL
We study a Schrödinger equation, with time dependant potential, set in a bounded domain with Dirichlet boundary data and real valued initial condition We consider the inverse problem of determining the potential when the normal derivative is given on a part of the boundary. The main tool to prove uniqueness and stability of this inverse problem is an appropriate global Carleman estimate.
Publié le : 2002-12-20
Classification:  Dirichlet boundary conditions,  Inverse problem,  Schrödinger equation,  Dirichlet boundary conditions.,  AMS : 35R30,  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
@article{hal-00143868,
     author = {Baudouin, Lucie and Puel, Jean-Pierre},
     title = {Uniqueness and stability in an inverse problem for the Schr\"odinger equation},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00143868}
}
Baudouin, Lucie; Puel, Jean-Pierre. Uniqueness and stability in an inverse problem for the Schrödinger equation. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00143868/