Loading [MathJax]/extensions/MathZoom.js
Images réciproques d'ensembles inévitables par les applications holomorphes de $\Bbb C\sp n$ dans $\Bbb C\sp n$. (French) [Reciprocal images of unavoidable sets by holomorphic mappings from $\Bbb C\sp n$ into $\Bbb C\sp n$]
Ounaïes, Myriam
HAL, hal-00137893 / Harvested from HAL
Unlike the one-dimensional case, when we deal with several complex variables, there exist entire one-to-one holomorphic maps with an identically equal to one jacobian, but with a non-dense range: the Fatou-Bieberbach maps (to simplify, we will call them Fatou-Bieberbach maps, even if there are not one-to-one). In Ref. [4], Gruman gave a sufficient density condition for a discrete set to be unavoidable and he constructed an explicit family of such sets $\ E_a , a \in \shadC ^*n \ $ . Analogeously to Nevanlinna theory, he showed that the Fatou-Bieberbach maps intersect these sets with the same asymptotic frequency for a outside a pluripolar set. In the present paper, we generalise these estimates to any discrete set E verifying the sufficient density condition by giving a lower and an upper bound for the pre-image of E by a Fatou-Bieberbach map F in terms of the growth of the function.
Publié le : 2002-04-05
Classification:  Holomorphic Maps,  Unavoidable Discrete Sets,  Growth Estimates,  Inverse Mapping Theorem,  [MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]
@article{hal-00137893,
     author = {Ouna\"\i es, Myriam},
     title = {Images r\'eciproques d'ensembles in\'evitables par les applications holomorphes de $\Bbb C\sp n$ dans $\Bbb C\sp n$. (French) [Reciprocal images of unavoidable sets by holomorphic mappings from $\Bbb C\sp n$ into $\Bbb C\sp n$]},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00137893}
}
Ounaïes, Myriam. Images réciproques d'ensembles inévitables par les applications holomorphes de $\Bbb C\sp n$ dans $\Bbb C\sp n$. (French) [Reciprocal images of unavoidable sets by holomorphic mappings from $\Bbb C\sp n$ into $\Bbb C\sp n$]. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00137893/