Loading [MathJax]/extensions/MathZoom.js
Local geometrized Rankin-Selberg method for GL_n
Lysenko, Sergey
HAL, hal-00136936 / Harvested from HAL
Following Laumon [10], to a nonramified l-adic local system E of rank n on a curve X one associates a complex of l-adic sheaves $_n{\cal K}_E$ on the moduli stack of rank n vector bundles on X with a section, which is cuspidal and satisfies Hecke property for E. This is a geometric counterpart of the well-known construction due to Shalika [17] and Piatetski-Shapiro [16]. We express the cohomology of the tensor product $_n{\cal K}_{E_1}\otimes {_n{\cal K}_{E_2}}$ in terms of cohomology of the symmetric powers of X. This may be considered as a geometric interpretation of the local part of the classical Rankin-Selberg method for GL(n) in the framework of the geometric Langlands program.
Publié le : 2002-07-05
Classification:  geometric Langlands,  Rankin-Selberg method,  MSC 11R39; 14H60,  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG],  [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
@article{hal-00136936,
     author = {Lysenko, Sergey},
     title = {Local geometrized Rankin-Selberg method for GL\_n},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00136936}
}
Lysenko, Sergey. Local geometrized Rankin-Selberg method for GL_n. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00136936/