Codimension $2$ subvarieties of abelian varieties.
Debarre, Olivier
HAL, hal-00129714 / Harvested from HAL
We study subvarieties of an $n$-dimensional complex principally polarized abelian variety (ppav) $(X,\theta)$ with class $d$ times the integral class $\theta^2/2$. On a general ppav, the question of their existence can be reformulated as: is the integral class $\theta^2/2$ the class of an algebraic cycle? We show that these subvarieties $V$ are singular if $n\ge 8$, and satisfy $dim(Sing(V))\ge n/4$ for $X$ general of dimension $\ge 26$. We also study an analog of Hartshorne's conjecture for codimension $2$ subvarieties of $X$. If $(X,\theta)$ is a general ppav of dimension $n\ge 11$, we prove that any smooth subvariety of $X$ with class $e\theta^2$, $e\le 8$, is (almost) a complete intersection.
Publié le : 1995-04-03
Classification:  abelian varieties,  vector bundles,  "abelian varieties,  vector bundles",  14K99, 14M07,14F05,  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00129714,
     author = {Debarre, Olivier},
     title = {Codimension $2$ subvarieties of abelian varieties.},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129714}
}
Debarre, Olivier. Codimension $2$ subvarieties of abelian varieties.. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129714/