Homologie de l'algèbre quantique des symboles pseudo-différentiels sur le cercle.
Wambst, Marc
HAL, hal-00129713 / Harvested from HAL
Let $\Psi_q$ be the quantum algebra of pseudo-differential symbols on the circle. We construct quasi-isomorphisms between the standard Hochschild complex of $\Psi_q$ and ``small'' complexes. We deduce the Hochschid homology and the first cyclic homology groups of $\Psi_q$. These constructions give naturally rise to two cyclic 1-cocycles which turn out to be the Lie cocycles constructed by Khesin, Lyubashenko and Roger. All homology groups considered here are topological in an appropriate sense.
Publié le : 1995-04-10
Classification:  cyclic homology,  quantum algebras,  "cyclic homology,  Hochschild homology,  pseudodifferential symbols,  quantum algebras",  16E40, 16S32, 81S05,  [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
@article{hal-00129713,
     author = {Wambst, Marc},
     title = {Homologie de l'alg\`ebre quantique des symboles pseudo-diff\'erentiels sur le cercle.},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129713}
}
Wambst, Marc. Homologie de l'algèbre quantique des symboles pseudo-différentiels sur le cercle.. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129713/