Let $\Psi_q$ be the quantum algebra of pseudo-differential symbols on the circle. We construct quasi-isomorphisms between the standard Hochschild complex of $\Psi_q$ and ``small'' complexes. We deduce the Hochschid homology and the first cyclic homology groups of $\Psi_q$. These constructions give naturally rise to two cyclic 1-cocycles which turn out to be the Lie cocycles constructed by Khesin, Lyubashenko and Roger. All homology groups considered here are topological in an appropriate sense.
@article{hal-00129713,
author = {Wambst, Marc},
title = {Homologie de l'alg\`ebre quantique des symboles pseudo-diff\'erentiels sur le cercle.},
journal = {HAL},
volume = {1995},
number = {0},
year = {1995},
language = {en},
url = {http://dml.mathdoc.fr/item/hal-00129713}
}
Wambst, Marc. Homologie de l'algèbre quantique des symboles pseudo-différentiels sur le cercle.. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129713/