Locally Symetric Finsler Spaces In Negative Curvature.
Foulon, Patrick
HAL, hal-00129571 / Harvested from HAL
E. C{fiverm ARTAN} introduced the Riemannian locally symmetric spaces, as the one whose curvature tensor is parallel. They also howe their name to the fact that for each point the geodesic reflexion is a local isometry. The aim of this note is to announce a strong rigidity result for Finsler spaces. Namely we show that a negatively curved locally symmetric (in the first above sense) Finsler space is isometric to a Riemann locally symmetric space.}
Publié le : 1997-01-21
Classification:  geometrie,  systemes dynamiques,  "geometrie,  systemes dynamiques",  58F17, 58F11,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
@article{hal-00129571,
     author = {Foulon, Patrick},
     title = {Locally Symetric Finsler Spaces In Negative Curvature.},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129571}
}
Foulon, Patrick. Locally Symetric Finsler Spaces In Negative Curvature.. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129571/