"We prove that the moduli space of empty real Enriques surfaces (and, thus, the moduli space of compact orientable $4$-dimensional Einstein manifolds whose universal covering is a $K3$-surface and $pi_1(E)=Bbb Z/2imesBbb Z/2$) is connected. The proof is based on a systematic study of real elliptic pencils and gives explicit models of all empty real Enriques surfaces. "
Publié le : 1997-03-18
Classification:
Enriques surfaces,
real elliptic pencils,
"Enriques surfaces,
real algebraic surfaces,
Einstein manifolds,
real elliptic pencils",
14J28, 14P25,53C25,
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00129569,
author = {Degtyarev, Alexander and Kharlamov, Viatcheslav},
title = {Empty real Enriques surfaces and Enriques-Einstein-Hitchin 4-manifolds.},
journal = {HAL},
volume = {1997},
number = {0},
year = {1997},
language = {en},
url = {http://dml.mathdoc.fr/item/hal-00129569}
}
Degtyarev, Alexander; Kharlamov, Viatcheslav. Empty real Enriques surfaces and Enriques-Einstein-Hitchin 4-manifolds.. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129569/