Empty real Enriques surfaces and Enriques-Einstein-Hitchin 4-manifolds.
Degtyarev, Alexander ; Kharlamov, Viatcheslav
HAL, hal-00129569 / Harvested from HAL
"We prove that the moduli space of empty real Enriques surfaces (and, thus, the moduli space of compact orientable $4$-dimensional Einstein manifolds whose universal covering is a $K3$-surface and $pi_1(E)=Bbb Z/2imesBbb Z/2$) is connected. The proof is based on a systematic study of real elliptic pencils and gives explicit models of all empty real Enriques surfaces. "
Publié le : 1997-03-18
Classification:  Enriques surfaces,  real elliptic pencils,  "Enriques surfaces,  real algebraic surfaces,  Einstein manifolds,  real elliptic pencils",  14J28, 14P25,53C25,  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00129569,
     author = {Degtyarev, Alexander and Kharlamov, Viatcheslav},
     title = {Empty real Enriques surfaces and Enriques-Einstein-Hitchin 4-manifolds.},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129569}
}
Degtyarev, Alexander; Kharlamov, Viatcheslav. Empty real Enriques surfaces and Enriques-Einstein-Hitchin 4-manifolds.. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129569/