The purpose of this paper is to establish a link between semi-simple Lie algebras graded by finite root systems as defined by S. Berman and R. Moody (see also the paper by G. Benkart and E. Zelmanov ) and the notion of C-admissible sub-algebra introduced by H. Rubenthaler, which plays an important role in the classification of reductive dual pairs.
Publié le : 1997-10-13
Classification:
algèbres de Lie semi-simples graduées par un système de racines,
sous-algèbres C-admissibles,
"algèbres de Lie semi-simples graduées par un système de racines,
sous-algèbres C-admissibles",
17B20, 17B70,
[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
@article{hal-00129567,
author = {Nervi, Josiane},
title = {Alg\`ebres de Lie semi-simples gradu\'ees par un syst\`eme de racines et sous-alg\`ebres C-admissibles.},
journal = {HAL},
volume = {1997},
number = {0},
year = {1997},
language = {fr},
url = {http://dml.mathdoc.fr/item/hal-00129567}
}
Nervi, Josiane. Algèbres de Lie semi-simples graduées par un système de racines et sous-algèbres C-admissibles.. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129567/