Invariant Manifolds for a Class of Dispersive, Hamiltonian, Partial Differential Equations
Pillet, Claude-Alain ; Wayne, C. Eugene
HAL, hal-00129125 / Harvested from HAL
We construct an invariant manifold of periodic orbits for a class of non-linear Schrödinger equations. Using standard ideas of the theory of center manifolds, we rederive the results of Soffer and Weinstein (Comm. Math. Phys.133, 119–146 (1997);J. Differential Equations98, 376–390 (1992)) on the large time asymptotics of small solutions (scattering theory).
Publié le : 1997-07-05
Classification:  [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph],  [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph],  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
@article{hal-00129125,
     author = {Pillet, Claude-Alain and Wayne, C. Eugene},
     title = {Invariant Manifolds for a Class of Dispersive, Hamiltonian, Partial Differential Equations},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129125}
}
Pillet, Claude-Alain; Wayne, C. Eugene. Invariant Manifolds for a Class of Dispersive, Hamiltonian, Partial Differential Equations. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129125/