Scattering phases and density of states for exterior domains
Pillet, Claude-Alain ; Eckmann, Jean-Pierre
HAL, hal-00129119 / Harvested from HAL
For a bounded open domain $\Omega\subset\mathbb R^2$ with connected complement and piecewise smooth boundary, we consider the Dirichlet Laplacian $\Delta$ on $\Omega$ and the S-matrix on its complement. We obtain precise bounds on the total scattering phase and and a Krein spectral formula, which improve similar results found in the literature
Publié le : 1995-07-05
Classification:  quantum billiards,  inside-outside duality,  scattering theory,  Krein formula,  zeta function,  [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph],  [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph],  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
@article{hal-00129119,
     author = {Pillet, Claude-Alain and Eckmann, Jean-Pierre},
     title = {Scattering phases and density of states for exterior domains},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00129119}
}
Pillet, Claude-Alain; Eckmann, Jean-Pierre. Scattering phases and density of states for exterior domains. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00129119/