$F_p$-espaces vectoriels de formes différentielles logarithmiques sur la droite projective
Pagot, Guillaume
HAL, hal-00127029 / Harvested from HAL
Let k be an algebraically closed field of characteristic p >0. Let $m \in \N$, (m,p)=1. We study $\fp$-vector spaces of logarithmic differential forms on the projective line such that each non zero form has a unique zero at $\infty$ of given order m-1. We discuss the existence of such vectors spaces according to the value of m. We give applications to the lifting to characteristic 0 of $(\Z /p\Z)^n$ actions as k-automorphisms of $k[[t]]$.
Publié le : 2002-07-05
Classification:  [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT],  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00127029,
     author = {Pagot, Guillaume},
     title = {$F\_p$-espaces vectoriels de formes diff\'erentielles logarithmiques sur la droite projective},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00127029}
}
Pagot, Guillaume. $F_p$-espaces vectoriels de formes différentielles logarithmiques sur la droite projective. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00127029/