Structures de Weyl admettant des spineurs parallèles
Moroianu, Andrei
HAL, hal-00126043 / Harvested from HAL
We prove that given a Weyl structure $D$ on a spin manifold $(M^n,g)$, the existence of a non-zero $D$-parallel spinor on $M$ implies that $D$ is closed for $n\ne4$. The same statement is true for $n=4$ if $M$ is compact. We give non-compact examples of 4-manifolds admitting parallel spinors with respect to non-closed Weyl structures.
Publié le : 1996-07-05
Classification:  spineurs parallèles,  structures de Weyl,  structures hermitiennes,  53A50, 53C07, 53C55,  [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
@article{hal-00126043,
     author = {Moroianu, Andrei},
     title = {Structures de Weyl admettant des spineurs parall\`eles},
     journal = {HAL},
     volume = {1996},
     number = {0},
     year = {1996},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-00126043}
}
Moroianu, Andrei. Structures de Weyl admettant des spineurs parallèles. HAL, Tome 1996 (1996) no. 0, . http://gdmltest.u-ga.fr/item/hal-00126043/