Loading [MathJax]/extensions/MathZoom.js
Transitive factorizations of free partially commutative monoids and Lie algebras
Luque, Jean-Gabriel ; Duchamp, Gérard,
HAL, hal-00086323 / Harvested from HAL
Let $\M(A,\theta)$ be a free partially commutative monoid. We give here a necessary and sufficient condition on a subalphabet $B\subset A$ such that the right factor of a bisection $\M(A,\theta)=\M(B,\theta_B).T$ be also partially commutative free. This extends strictly the (classical) elimination theory on partial commutations and allows to construct new factorizations of $\M(A,\theta)$ and associated bases of $L_K(A,\theta)$.
Publié le : 2002-07-05
Classification:  [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO],  [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC],  [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM],  [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
@article{hal-00086323,
     author = {Luque, Jean-Gabriel and Duchamp, G\'erard, },
     title = {Transitive factorizations of free partially commutative monoids and Lie algebras},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00086323}
}
Luque, Jean-Gabriel; Duchamp, Gérard, . Transitive factorizations of free partially commutative monoids and Lie algebras. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00086323/