Loading [MathJax]/extensions/MathZoom.js
The Zeckendorf expansion of polynomial sequences
Drmota, Michael ; Steiner, Wolfgang
HAL, hal-00019871 / Harvested from HAL
In the first part of the paper we prove that the Zeckendorf sum-of-digits function $s_Z(n)$ and similarly defined functions evaluated on polynomial sequences of positive integers or primes satisfy a central limit theorem. We also prove that the Zeckendorf expansion and the $q$-ary expansions of integers are asymptotically independent.
Publié le : 2002-07-05
Classification:  somme des chiffres,  theoreme central limite,  11A67, 11K16,  [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
@article{hal-00019871,
     author = {Drmota, Michael and Steiner, Wolfgang},
     title = {The Zeckendorf expansion of polynomial sequences},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00019871}
}
Drmota, Michael; Steiner, Wolfgang. The Zeckendorf expansion of polynomial sequences. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00019871/