Loading [MathJax]/extensions/MathZoom.js
Dilogarithme Quantique et 6j-Symboles Cycliques
Baseilhac, Stephane
HAL, hal-00019444 / Harvested from HAL
Let $\mathcal{W}_N$ be a quantized Borel subalgebra of $U_q(sl(2,\mc))$, specialized at a primitive root of unity $\omega = \exp(2i\pi/N)$ of odd order $N >1$. One shows that the $6j$-symbols of cyclic representations of $\mathcal{W}_N$ are representations of the canonical element of a certain extension of the Heisenberg double of $\mathcal{W}_N$. This canonical element is a twisted $q$-dilogarithm. In particular, one gives explicit formulas for these $6j$-symbols, and one constructs partial symmetrizations of them, the c-$6j$-symboles. The latters are at the basis of the construction of the quantum hyperbolic invariants of 3-manifolds.
Publié le : 2002-07-05
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
@article{hal-00019444,
     author = {Baseilhac, Stephane},
     title = {Dilogarithme Quantique et 6j-Symboles Cycliques},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00019444}
}
Baseilhac, Stephane. Dilogarithme Quantique et 6j-Symboles Cycliques. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00019444/