Noncommutative symmetric functions III : Deformations of Cauchy and convolution algebras
Duchamp, Gérard, ; Klyachko, Alexander ; Krob, Daniel ; Thibon, Jean-Yves
HAL, hal-00018540 / Harvested from HAL
This paper discusses various deformations of free associative algebras and of their convolution algebras. Our main examples are deformations of noncommutative symmetric functions related to families of idempotents in descent algebras, and a simple q-analogue of the shuffle product, which has unexpected connections with quantum groups, hyperplane arrangements, and certain questions in mathematical physics (the quon algebra, generalized Brownian motion).
Publié le : 1997-07-04
Classification:  [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA],  [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO],  [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
@article{hal-00018540,
     author = {Duchamp, G\'erard,  and Klyachko, Alexander and Krob, Daniel and Thibon, Jean-Yves},
     title = {Noncommutative symmetric functions III : Deformations of Cauchy and convolution algebras},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00018540}
}
Duchamp, Gérard, ; Klyachko, Alexander; Krob, Daniel; Thibon, Jean-Yves. Noncommutative symmetric functions III : Deformations of Cauchy and convolution algebras. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00018540/