Noncommutative symmetric functions IV : Quantum linear groups and Hecke algebras at q = 0
Krob, Daniel ; Thibon, Jean-Yves
HAL, hal-00018539 / Harvested from HAL
Nous montrons comment la théorie des fonctions symétriques non commutatives permet de rendre compte combinatoirement des représentations irréductibles des groupes quantiques de type A et de l'alèbre de Hecke de même type à q = 0.
Publié le : 1997-07-05
Classification:  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA],  [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA],  [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO],  [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
@article{hal-00018539,
     author = {Krob, Daniel and Thibon, Jean-Yves},
     title = {Noncommutative symmetric functions IV : Quantum linear groups and Hecke algebras at q = 0},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00018539}
}
Krob, Daniel; Thibon, Jean-Yves. Noncommutative symmetric functions IV : Quantum linear groups and Hecke algebras at q = 0. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00018539/