Loading [MathJax]/extensions/MathZoom.js
On a geometric description of $Gal(\bar{\bf Q}_p/{\bf Q}_p)$ and a p-adic avatar of $\hat{GT}$
André, Yves
HAL, hal-00010039 / Harvested from HAL
We develop a $p$-adic version of the so-called Grothendieck-Teichmüller theory (which studies $Gal(\bar{\bf Q}/{\bf Q})$ by means of its action on profinite braid groups or mapping class groups). For every place $v$ of $\bar{\bf Q}$, we give some geometrico-combinatorial descriptions of the local Galois group $Gal(\bar{\bf Q}_v/{\bf Q}_v)$ inside $Gal(\bar{\bf Q}/{\bf Q})$. We also show that $Gal(\bar{\bf Q}_p/{\bf Q}_p)$ is the automorphism group of an appropriate $\pi_1$-functor in $p$-adic geometry.
Publié le : 2002-07-05
Classification:  [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT],  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00010039,
     author = {Andr\'e, Yves},
     title = {On a geometric description of $Gal(\bar{\bf Q}\_p/{\bf Q}\_p)$ and a p-adic avatar of $\hat{GT}$},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00010039}
}
André, Yves. On a geometric description of $Gal(\bar{\bf Q}_p/{\bf Q}_p)$ and a p-adic avatar of $\hat{GT}$. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00010039/