Loading [MathJax]/extensions/MathZoom.js
Theoreme de Van Kampen pour les champs algebriques
Zoonekynd, V.
HAL, hal-00007710 / Harvested from HAL
We define a category whose objects are finite etale coverings of an algebraic stack and prove that it is a Galois category and that it allows one to compute the fundamental group of the stack. We then prove a Van Kampen theorem for algebraic stacks whose simplest form reads: Let U and V be open substacks of an algebraic stack X with X = U \\union V, let P be a set of base points, at least one in each connected component of X, U, V and U \\inter V, then pi_1(X,P) is the amalgamated sum of pi_1(U,P) and pi_1(V,P) over pi_1(U \\inter V, P).
Publié le : 2002-07-05
Classification:  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG],  [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT]
@article{hal-00007710,
     author = {Zoonekynd, V.},
     title = {Theoreme de Van Kampen pour les champs algebriques},
     journal = {HAL},
     volume = {2002},
     number = {0},
     year = {2002},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/hal-00007710}
}
Zoonekynd, V. Theoreme de Van Kampen pour les champs algebriques. HAL, Tome 2002 (2002) no. 0, . http://gdmltest.u-ga.fr/item/hal-00007710/