Degenerate asymptotic perturbation theory
Pillet, Claude-Alain ; Hunziker, Walter
HAL, hal-00005468 / Harvested from HAL
Asymptotic Rayleigh-Schrodinger perturbation theory for discrete eigenvalues is developed systematically in the general degenerate case. For this purpose we study the spectral properties of mxm-matrix functions A(kappa) of a complex variable kappa which have an asymptotic expansion $\sum_j A_j \kappa^j$ as kappa->0. We show that asymptotic expansions for groups of eigenvalues and for the corresponding spectral projections of A(kappa) can be obtained from the set $\{A_j\}$ by analytic perturbation theory. Special attention is given to the case where A(kappa) is Borel-summable in some sector originating from kappa=0 with opening angle larger than pi. Here we prove that the asymptotic series describe individual eigenvalues and eigenprojections of A(kappa) which are shown to be holomorphic in S near kappa=0 and Borel summable if $A_j\ast=A_j$ for all j. We then fit these results into the scheme of Rayleigh-Schrodinger perturbation theory and we give some examples of asymptotic estimates for Schrdinger operators.
Publié le : 1983-07-05
Classification:  quantum mechanics,  perturbation theory,  asymptotic expansion,  Borel summability,  [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph],  [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph],  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA],  [MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
@article{hal-00005468,
     author = {Pillet, Claude-Alain and Hunziker, Walter},
     title = {Degenerate asymptotic perturbation theory},
     journal = {HAL},
     volume = {1983},
     number = {0},
     year = {1983},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00005468}
}
Pillet, Claude-Alain; Hunziker, Walter. Degenerate asymptotic perturbation theory. HAL, Tome 1983 (1983) no. 0, . http://gdmltest.u-ga.fr/item/hal-00005468/