Spectral duality for planar billiards
Eckmann, Jean-Pierre ; Pillet, Claude-Alain
HAL, hal-00005464 / Harvested from HAL
For a bounded open domain Omega with connected complement in R^2 and piecewise smooth boundary, we consider the Dirichlet Laplacian Delta_Omega on Omega and the S-matrix on the complement R^2\Omega. We show that the on-shell S-matrices S(k) have eigenvalues converging to 1 as k -> ko exactly when Delta_Omega has an eigenvalue at energy ko^2. This includes multiplicities, and proves a weak form of "transparency" at k = ko. We also show that stronger forms of transparency, such as S(k) having an eigenvalue 1 are not expected to hold in general.
Publié le : 1995-07-05
Classification:  spectral duality,  quantum billiard,  exterior scattering,  [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph],  [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph],  [NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD],  [PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall],  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP],  [MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
@article{hal-00005464,
     author = {Eckmann, Jean-Pierre and Pillet, Claude-Alain},
     title = {Spectral duality for planar billiards},
     journal = {HAL},
     volume = {1995},
     number = {0},
     year = {1995},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00005464}
}
Eckmann, Jean-Pierre; Pillet, Claude-Alain. Spectral duality for planar billiards. HAL, Tome 1995 (1995) no. 0, . http://gdmltest.u-ga.fr/item/hal-00005464/