Injective positively ordered monoids II
Wehrung, Friedrich
HAL, hal-00004712 / Harvested from HAL
We continue in this paper the study of positively ordered monoids (POMs) initiated in "Injective positively ordered monoids I". We prove that injective POMs are the retracts of the powers of $[0,\infty ]$. We also characterize the natural POM-homomorphism from a given refinement POM to its bidual, with, for example, applications to decomposition spaces. As another application, we prove that a refinement POM admits a 'Banach limit' if and only if it embeds into a power of $[0,\infty]$.
Publié le : 1992-07-05
Classification:  positively ordered,  injective,  refinement property,  Commutative monoid,  Primary 06F05, 06F30; Secondary 28B10,  [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
@article{hal-00004712,
     author = {Wehrung, Friedrich},
     title = {Injective positively ordered monoids II},
     journal = {HAL},
     volume = {1992},
     number = {0},
     year = {1992},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00004712}
}
Wehrung, Friedrich. Injective positively ordered monoids II. HAL, Tome 1992 (1992) no. 0, . http://gdmltest.u-ga.fr/item/hal-00004712/