Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary.
Nier, Francis ; Helffer, Bernard
HAL, hal-00002744 / Harvested from HAL
This article is a continuation of previous works by Bovier-Eckhoff-Gayrard-Klein, Bovier-Gayrard-Klein and Helffer-Klein-Nier. It is concerned with the analysis of the exponentially small eigenvalues of a semiclassical Witten Laplacian. We consider here the case of riemanian manifolds with boundary with a Dirichlet realization of the Witten Laplacian. A modified version of this preprint has been published in Mémoires de la SMF vol. 105, (2006)
Publié le : 2004-09-01
Classification:  Accurate asymptotics,  Exponentially small eigenvalues,  Witten complex,  Boundary value problem,  MSC2000: 35P15 35Q40 58J32 58J37 58J10,  [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
@article{hal-00002744,
     author = {Nier, Francis and Helffer, Bernard},
     title = {Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary.},
     journal = {HAL},
     volume = {2004},
     number = {0},
     year = {2004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00002744}
}
Nier, Francis; Helffer, Bernard. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary.. HAL, Tome 2004 (2004) no. 0, . http://gdmltest.u-ga.fr/item/hal-00002744/