Automorphisms of free groups have asymptotically periodic dynamics
Levitt, Gilbert ; Lustig, Martin
HAL, hal-00002311 / Harvested from HAL
We show that every automorphism $\alpha$ of a free group $F_k$ of finite rank $k$ has {\it asymptotically periodic\/} dynamics on $F_k$ and its boundary $\partial F_k$: there exists a positive power $\alpha^q$ such that every element of the compactum $F_k \cup \partial F_k$ converges to a fixed point under iteration of $\alpha^q$.
Publié le : 2004-07-26
Classification:  [MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR],  [MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
@article{hal-00002311,
     author = {Levitt, Gilbert and Lustig, Martin},
     title = {Automorphisms of free groups have asymptotically periodic dynamics},
     journal = {HAL},
     volume = {2004},
     number = {0},
     year = {2004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00002311}
}
Levitt, Gilbert; Lustig, Martin. Automorphisms of free groups have asymptotically periodic dynamics. HAL, Tome 2004 (2004) no. 0, . http://gdmltest.u-ga.fr/item/hal-00002311/