Cycles algébriques sur les surfaces K3 réelles
Mangolte, Frédéric
HAL, hal-00001386 / Harvested from HAL
For a real algebraic K3 surface X, we give all possible values of the dimension of the group of algebraic cycles of X(R). In particular, we prove that if X is not an M-surface, X can always be deformed over R to some X' with totally algebraic homology. Furthermore, we obtain that in certain moduli space of real algebraic K3 surfaces, the collection of real isomorphism classes of K3 surfaces X such that h^1_{alg}(X(R)) is greater or equal than k is a countable union of subspaces of dimension 20-k.
Publié le : 1997-07-05
Classification:  real algebraic surface,  algebraic cycle,  K3-surface,  MSC (1991) 14C25 14P25 14J28,  [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
@article{hal-00001386,
     author = {Mangolte, Fr\'ed\'eric},
     title = {Cycles alg\'ebriques sur les surfaces K3 r\'eelles},
     journal = {HAL},
     volume = {1997},
     number = {0},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/hal-00001386}
}
Mangolte, Frédéric. Cycles algébriques sur les surfaces K3 réelles. HAL, Tome 1997 (1997) no. 0, . http://gdmltest.u-ga.fr/item/hal-00001386/