Sensor Clouds have opened new opportunities for agricultural monitoring. These infrastructures use Wireless Sensor Networks (WSNs) to collect data on-field and Cloud Computing services to store and process them. Among other applications of Sensor Clouds, frost prevention is of special interest among grapevine producers in the Province of Mendoza - Argentina, since frost is one of the main causes of economic loss in the province. Currently, there is a wide offer of public cloud services that can be used in order to process data collected by Sensor Clouds. Therefore, there is a need for tools to determine which instance is the most appropriate in terms of execution time and economic costs for running frost prediction applications in an isolated or cluster way. In this paper, we develop models to estimate the performance of different Amazon EC2 instances for processing frosts prediction applications. Finally, we obtain results that show which is the best instance for processing these applications.
Publié le : 2018-11-07
Classification:  Parallel and Distributed Computing, Cloud Computing, Sensor Clouds,  Cloud computing, wireless sensor networks, frost prediction, virtual clusters, sensor clouds, Amazon EC2
@article{cai2018_4_815,
     author = {Lucas E. Iacono; ITIC Research Institute and Consejo Nacional de Investigaciones Cient\'\i ficas y T\'ecnicas (CONICET), Argentina and Universidad Nacional de Cuyo, Mendoza and Jos\'e Luis V\'azquez Poletti; Departamento de Arquitectura de Computadores y Autom\'atica, Facultad de Inform\'atica, Universidad Complutense de Madrid, Madrid and Carlos Garc\'\i a Garino; ITIC Research Institute, Facultad de Ingenier\'\i a, Universidad Nacional de Cuyo, Mendoza and Ignacio Mart\'\i n Llorente; Departamento de Arquitectura de Computadores y Autom\'atica, Facultad de Inform\'atica, Universidad Complutense de Madrid, Madrid},
     title = {Performance Models for Frost Prediction in Public Cloud Infrastructures},
     journal = {Computing and Informatics},
     volume = {36},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/cai2018_4_815}
}
Lucas E. Iacono; ITIC Research Institute and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina and Universidad Nacional de Cuyo, Mendoza; José Luis Vázquez Poletti; Departamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Madrid; Carlos García Garino; ITIC Research Institute, Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza; Ignacio Martín Llorente; Departamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Madrid. Performance Models for Frost Prediction in Public Cloud Infrastructures. Computing and Informatics, Tome 36 (2018) no. 6, . http://gdmltest.u-ga.fr/item/cai2018_4_815/