Certificate-based public key cryptography not only solves certificate revocation problem in traditional PKI but also overcomes key escrow problem inherent in identity-based cryptosystems. This new primitive has become an attractive cryptographic paradigm. In this paper, we propose the notion and the security model of certificate-based designated verifier signatures (CBDVS). We provide the first construction of CBDVS and prove that our scheme is existentially unforgeable against adaptive chosen message attacks in the random oracle model. Our scheme only needs two pairing operations, and the signature is only one element in the bilinear group G1. To the best of our knowledge, our scheme enjoys shortest signature length with less operation cost.
Publié le : 2017-02-07
Classification:  Knowledge and Information Engineering; Information Security; Public Key Cryptography,  Public key cryptography, digital signature, certificate-based signature, designated verifier signature, random oracle model,  94A60
@article{cai1956,
     author = {Jiguo Li; College of Computer and Information, Hohai University, Nanjing and Na Qian; College of Computer and Information, Hohai University, Nanjing and Yichen Zhang; College of Computer and Information, Hohai University, Nanjing and Xinyi Huang; School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, Fujian},
     title = {An Efficient Certificate-Based Designated Verifier Signature Scheme},
     journal = {Computing and Informatics},
     volume = {35},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/cai1956}
}
Jiguo Li; College of Computer and Information, Hohai University, Nanjing; Na Qian; College of Computer and Information, Hohai University, Nanjing; Yichen Zhang; College of Computer and Information, Hohai University, Nanjing; Xinyi Huang; School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, Fujian. An Efficient Certificate-Based Designated Verifier Signature Scheme. Computing and Informatics, Tome 35 (2017) no. 4, . http://gdmltest.u-ga.fr/item/cai1956/