The performance of data grids for data intensive, real-time applications is highly dependent on the data dissemination algorithm employed in the system. Motivated by this fact, this study first formally defines the real-time splittable data dissemination problem (RTS/DDP) where data transfer requests can be routed over multiple paths to maximize the number of data transfers to be completed before their deadlines. Since RTS/DDP is proved to be NP-hard, four different heuristic algorithms, namely kSP/ESMP, kSP/BSMP, kDP/ESMP, and kDP/BSMP are proposed. The performance of these heuristic algorithms is analyzed through an extensive set of data grid system simulation scenarios. The simulation results reveal that a performance increase up to 8 % as compared to a very competitive single path data dissemination algorithm is possible.