The distributed computing environments, e.g. clouds, often deal with huge amounts of data, which constantly increase. The global growth of data is caused by ubiquitous personal devices, enterprise and scientific applications, etc. As the size of data grows new challenges are emerging in the context of storage management. Modern data and storage resource management systems need to face wide range of problems -- minimizing energy consumption (green data centers), optimizing resource usage, throughput and capacity, data availability, security and legal issues, scalability. In addition users or their applications can have QoS (Quality of Service) requirements concerning the storage access, which further complicates the management. To cope with this problem a common mass storage system model taking into account the performance aspects of a storage system becomes a necessity. The model described with semantic technologies brings a semantic interoperability between the system components. In this paper we describe our approach at data management with QoS based on the developed models as a case study for distributed environments.