CONTENTSIntroduction..................................................................................................................................................5§1. Basic notions and notation.....................................................................................................................7 1.1. Automorphisms of principal bundles....................................................................................................7 1.2. Connections and parallel translations.................................................................................................9 1.3. Symmetries and connections.............................................................................................................11§2. The action of the gauge group on connections....................................................................................14 2.1. The gauge group...............................................................................................................................14 2.2. The action of on on ................................................................................................17 2.3. Weak and strong invariant metrics on .....................................................................................20 2.4. The equivariant embedding of into the space of Riemannian metrics on P...................23§3. The Slice Theorem...............................................................................................................................30 3.1. The Hodge-Kodaira-like decomposition for ....................................................................30 3.2. The orbits are submanifolds..............................................................................................................36 3.3. The Slice Theorem............................................................................................................................38§4. The geometric structure of ..................................................................................43 4.1. Consequences of the Slice Theorem.................................................................................................44 4.2. The Countability Theorem.................................................................................................................47 4.3. Density theorems...............................................................................................................................49 4.4. The stratification of .................................................................................................................57References.................................................................................................................................................61
@book{bwmeta1.element.zamlynska-fda8e116-db0b-44a1-866f-e3751b3154c2, author = {Witold Kondracki and Jan Rogulski}, title = {On the stratification of the orbit space for the action of automorphisms on connections}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1986}, zbl = {0614.57025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-fda8e116-db0b-44a1-866f-e3751b3154c2} }
Witold Kondracki; Jan Rogulski. On the stratification of the orbit space for the action of automorphisms on connections. GDML_Books (1986), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-fda8e116-db0b-44a1-866f-e3751b3154c2/