CONTENTS1. Introduction .......................................................................................................................................................... 52. Notation and preliminary remarks............................................................................................................................ 73. A geometric approach to the calculus of variations............................................................................................... 94. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 195. A multiphase structure of General Relativity............................................................................................................ 226. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 267. A symplectic structure in the set of solutions of field equations.......................................................................... 298. A symplectic structure in the set of Einstein metrics.............................................................................................. 369. The gauge distribution and the action of the diffeomorphism group.................................................................. 3910. Degrees of freedom and a superphase space -for General Relativity............................................................. 4611. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 4812. A variational principle for General Relativity............................................................................................................ 5513. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 5714. The Hamilton-Jacobi equation in General Relativity............................................................................................. 6215. Proofs............................................................................................................................................................................. 66Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79References.......................................................................................................................................................................... 82
@book{bwmeta1.element.zamlynska-f9a49fe7-eb44-48db-ac41-dae3cb8b1e5a, author = {Wiktor Szczyrba}, title = {On the geometric structure of the set of solutions of Einstein equations}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1977}, zbl = {0362.58007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-f9a49fe7-eb44-48db-ac41-dae3cb8b1e5a} }
Wiktor Szczyrba. On the geometric structure of the set of solutions of Einstein equations. GDML_Books (1977), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-f9a49fe7-eb44-48db-ac41-dae3cb8b1e5a/