Chebyshevian splines
Zygmunt Wronicz
GDML_Books, (1990), p.

CONTENTSIntroduction...........................................................................................................5I.   Canonical complete Chebyshev systems   1. Canonical complete Chebyshev systems.......................................................7   2. Interpolation by generalized polynomials and divided differences................12   3. The Markov inequality for generalized polynomials......................................16II.   Chebyshevian splines   1. Basic properties...........................................................................................18   2. B-splines......................................................................................................21   3. The Marsden identity...................................................................................28   4. De Boor's inequalities..................................................................................32   5. A recurrence relation for B-splines...............................................................37   6. Bounds on zeros..........................................................................................41III.   Spline operators   1. Orthogonal spline projections .....................................................................46   2. Biorthogonal systems..................................................................................49   3. Equivalence of spline bases .......................................................................57   4. Positive spline operators and orthogonal splines .......................................60IV.    Generalized moduli of smoothness and approximation by splines   1. Generalized moduli of smoothness .............................................................64   2. Generalization of the Whitney Theorem.......................................................70   3. Best approximation by splines......................................................................72   4. The Bernstein type inequality for splines ....................................................77V.   Applications to approximation of analytic functions   1. Approximation by analytic splines................................................................78   2. Biorthogonal systems in the complex space A(D)........................................83   3. Systems conjugate to biorthogonal spline systems......................................86References.........................................................................................................94List of symbols....................................................................................................98

1985 Mathematics Subject Classification: 41A15, 46E15, 46B15

EUDML-ID : urn:eudml:doc:268497
@book{bwmeta1.element.zamlynska-ec9d4745-4d5c-49ef-9b7b-f20a2b5e616c,
     author = {Zygmunt Wronicz},
     title = {Chebyshevian splines},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1990},
     zbl = {0725.41010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-ec9d4745-4d5c-49ef-9b7b-f20a2b5e616c}
}
Zygmunt Wronicz. Chebyshevian splines. GDML_Books (1990),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-ec9d4745-4d5c-49ef-9b7b-f20a2b5e616c/