CONTENTS1. Introduction..................................................................................................................................... 5 1.1. Main Theorem 1.1................................................................................................................. 8 1.2. Main Theorem 1.2................................................................................................................. 92. Radon transform.................................................................................................................................... 10 2.1. Definition of the Radon transform..................................................................................... 10 2.2. Basic notations and formulae............................................................................................. 163. - time decay estimates for the Cauchy problem..................... 18 3.1. Matrix of fundamental solutions for linear hyperbolic thermoelasticity....................... 18 3.2. - time decay estimates for linear hyperbolic thermoelasticity............................................................................................................................. 25 3.3. Fundamental solution to the linear hyperbolic heat equation...................................... 31 3.4. - time decay estimates for the linear hyperbolic heat equation................................................................................................................................. 354. Local existence of solutions................................................................................................................ 39 4.1. Local existence of solutions to the initial value problem for nonlinear hyperbolic thermoelasticity............................................................................................................................. 39 4.2. Local existence of solutions to the initial value problem for the nonlinear hyperbolic heat equation............................................................................................................. 415. High energy estimates......................................................................................................................... 42 5.1. High energy estimates for the nonlinear hyperbolic thermoelasticity........................ 42 5.2. High energy estimates for the nonlinear hyperbolic heat equation............................. 456. Global solutions in nonlinear hyperbolic thermoelasticity theory................................................. 46 6.1. Proof of main Theorem 1.1.................................................................................................. 46 6.2. Proof of main Theorem 1.2.................................................................................................. 507. General remarks.................................................................................................................................... 52 References..................................................................................................................................... 54
@book{bwmeta1.element.zamlynska-e424392d-a48b-44fe-accc-052a33574940, author = {Jerzy August Gawinecki}, title = {Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1995}, zbl = {0844.35068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-e424392d-a48b-44fe-accc-052a33574940} }
Jerzy August Gawinecki. Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity. GDML_Books (1995), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-e424392d-a48b-44fe-accc-052a33574940/