Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity
Jerzy August Gawinecki
GDML_Books, (1995), p.

CONTENTS1. Introduction..................................................................................................................................... 5 1.1. Main Theorem 1.1................................................................................................................. 8 1.2. Main Theorem 1.2................................................................................................................. 92. Radon transform.................................................................................................................................... 10 2.1. Definition of the Radon transform..................................................................................... 10 2.2. Basic notations and formulae............................................................................................. 163. p-q time decay estimates for the Cauchy problem..................... 18 3.1. Matrix of fundamental solutions for linear hyperbolic thermoelasticity....................... 18 3.2. p-q time decay estimates for linear hyperbolic thermoelasticity............................................................................................................................. 25 3.3. Fundamental solution to the linear hyperbolic heat equation...................................... 31 3.4. p-q time decay estimates for the linear hyperbolic heat equation................................................................................................................................. 354. Local existence of solutions................................................................................................................ 39 4.1. Local existence of solutions to the initial value problem for nonlinear hyperbolic thermoelasticity............................................................................................................................. 39 4.2. Local existence of solutions to the initial value problem for the nonlinear hyperbolic heat equation............................................................................................................. 415. High energy estimates......................................................................................................................... 42 5.1. High energy estimates for the nonlinear hyperbolic thermoelasticity........................ 42 5.2. High energy estimates for the nonlinear hyperbolic heat equation............................. 456. Global solutions in nonlinear hyperbolic thermoelasticity theory................................................. 46 6.1. Proof of main Theorem 1.1.................................................................................................. 46 6.2. Proof of main Theorem 1.2.................................................................................................. 507. General remarks.................................................................................................................................... 52 References..................................................................................................................................... 54

EUDML-ID : urn:eudml:doc:268568
@book{bwmeta1.element.zamlynska-e424392d-a48b-44fe-accc-052a33574940,
     author = {Jerzy August Gawinecki},
     title = {Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1995},
     zbl = {0844.35068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-e424392d-a48b-44fe-accc-052a33574940}
}
Jerzy August Gawinecki. Global solutions to initial value problems in nonlinear hyperbolic thermoelasticity. GDML_Books (1995),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-e424392d-a48b-44fe-accc-052a33574940/