CONTENTSIntroduction......................................................................................................................................... 5 1. An outline of results.................................................................................................................. 5 2. A fibre bundle model of elementary particles as a motivation for the capacities in question..................................................................................................... 9 3. An example................................................................................................................................ 10 4. A potential-theoretical motivation for the capacities in question..................................... 12 5. Capacities and plurisubharmonic functions....................................................................... 14 6. A homology approach and the general definition of capacity........................................... 16 7. Finiteness and relations between capacities dependent on the chosen covering and independent of it.................................................................................................................... 19 8. Behaviour under holomorphic and biholomorphic mappings......................................... 22 9. Some lemmas on Riemann surfaces................................................................................. 25 10. Comparison of the "complex" and "real" capacities in the case of Riemann surfaces................................................................................................................... 30 11. Dependence on the universal covering manifold............................................................ 33 12. Relation to elliptic and hyperbolic quasiconformal mappings...................................... 36 13. Mathematical and physical conclusions............................................................................ 39References......................................................................................................................................... 41
@book{bwmeta1.element.zamlynska-c6431839-6ddb-4fa3-bb7a-b741b3ecdf74,
author = {Julian \L awrynowicz},
title = {On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings},
series = {GDML\_Books},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
address = {Warszawa},
year = {1980},
zbl = {0475.32005},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-c6431839-6ddb-4fa3-bb7a-b741b3ecdf74}
}
Julian Ławrynowicz. On n class of capacities on complex manifolds endowed with an hermitian structure and their relation to elliptic and hyperbolic quasiconformal mappings. GDML_Books (1980), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-c6431839-6ddb-4fa3-bb7a-b741b3ecdf74/