Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of Lα
Misiewicz Jolanta K.
GDML_Books, (1996), p.

CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9  II.1. Symmetric stable vectors................................................................................9  II.2. Pseudo-isotropic random vectors..................................................................15  II.3. Elliptically contoured vectors..........................................................................23  II.4. α-symmetric random vectors..........................................................................27  II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35  III.1. Pseudo-isotropic exchangeable sequences.................................................35  III.2. Schoenberg-type theorems..........................................................................40  III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45  IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45  IV.2. Elliptically contoured processes..................................................................47  IV.3. Symmetric stable stochastic processes......................................................50  IV.4. Spectral representation of symmetric stable processes.............................56  IV.5. Substable and pseudo-isotropic stochastic processes...............................59  IV.6. Lα-dependent stochastic integrals.......................................................62  IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64  V.1. Infinitely divisible distributions. Lévy measures............................................66  V.2. Approximative logarithm................................................................................68  V.3. Infinite divisibility of substable random vectors..............................................73  V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................90

1991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.

EUDML-ID : urn:eudml:doc:270064
@book{bwmeta1.element.zamlynska-bdd5b126-068d-41a9-8399-68719c6b5a24,
     author = {Misiewicz Jolanta K.},
     title = {Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L\_$\alpha$$
            },
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1996},
     zbl = {0948.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-bdd5b126-068d-41a9-8399-68719c6b5a24}
}
Misiewicz Jolanta K. Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$
            . GDML_Books (1996),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-bdd5b126-068d-41a9-8399-68719c6b5a24/