CONTENTSI. Introduction..........................................................................................................5II. Pseudo-isotropic random vectors........................................................................9 II.1. Symmetric stable vectors................................................................................9 II.2. Pseudo-isotropic random vectors..................................................................15 II.3. Elliptically contoured vectors..........................................................................23 II.4. α-symmetric random vectors..........................................................................27 II.5. Substable random vectors.............................................................................32III. Exchangeability and pseudo-isotropy.................................................................35 III.1. Pseudo-isotropic exchangeable sequences.................................................35 III.2. Schoenberg-type theorems..........................................................................40 III.3. Some generalizations...................................................................................43IV. Stable and substable stochastic processes.....................................................45 IV.1. Gaussian processes and Reproducing Kernel Hilbert Spaces....................45 IV.2. Elliptically contoured processes..................................................................47 IV.3. Symmetric stable stochastic processes......................................................50 IV.4. Spectral representation of symmetric stable processes.............................56 IV.5. Substable and pseudo-isotropic stochastic processes...............................59 IV.6. -dependent stochastic integrals.......................................................62 IV.7. Random limit theorems...............................................................................63V. Infinite divisibility of substable stochastic processes..........................................64 V.1. Infinitely divisible distributions. Lévy measures............................................66 V.2. Approximative logarithm................................................................................68 V.3. Infinite divisibility of substable random vectors..............................................73 V.4. Infinite divisibility of substable processes......................................................77References...........................................................................................................80Index......................................................................................................................90
1991 Mathematics Subject Classification: Primary 46A15, 60B11; Secondary 60G07, 46B20, 60E07, 60K99.
@book{bwmeta1.element.zamlynska-bdd5b126-068d-41a9-8399-68719c6b5a24, author = {Misiewicz Jolanta K.}, title = {Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L\_$\alpha$$ }, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1996}, zbl = {0948.46013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-bdd5b126-068d-41a9-8399-68719c6b5a24} }
Misiewicz Jolanta K. Substable and pseudo-isotropic processes. Connections with the geometry of subspaces of $L_α$ . GDML_Books (1996), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-bdd5b126-068d-41a9-8399-68719c6b5a24/