Kolmogorov problem in WrHω[0,1] and extremal Zolotarev ω-splines
Bagdasarov Sergey K.
GDML_Books, (1998), p.

AbstractThe main result of the paper, based on the Borsuk Antipodality Theorem, describes extremal functions of the Kolmogorov-Landau problem(*) f(m)(ξ)sup, fWrHω[ξ,b], ||f||[a,b]B,for all 0 < m ≤ r, ξ ≤ a or ξ = (a+b)/2, all B > 0 and concave moduli of continuity ω on ℝ₊. It is shown that any extremal function =B,r,m,ω,ξ of the problem (*) enjoys the following two characteristic properties. First, the function (r)(·)-(r)(ξ) is extremal for the problem(**) ξbh(t)ψ(t)dtsup, hHω[ξ,b], h(ξ) = 0,for an appropriate choice of the kernel ψ with a finite number of sign changes on [ξ,b]. Second, the function equioscillates n = n(B,r,m,ω,ξ) ≥ r+1 times on the interval [a,b] between -B and B. This analogy with the properties of extremal functions in the linear case ω(t) = t of the problem (*) makes it natural to call these functions the Zolotarev and Chebyshev ω-splines.As in the linear case ω(t)=t, the solution of the problem (*) leads to the qualitative description of extremal functions and sharp additive inequalities for intermediate derivatives in the celebrated Kolmogorov problems on the infinite intervals I = ℝ or ℝ₊:||f(m)||(I)sup, fWrHω(I), ||f||(I)B, 0 < m ≤ r.

CONTENTS0. Introduction...........................................................................................51. Extrema of functionals in Hω[a,b] and perfect ω-splines................112. Auxiliary results...................................................................................223. Formulation of the main result.............................................................254. Proof of the main result.......................................................................325. The extrapolation problem...................................................................546. Maximization of functionals in Hω[a,a], -∞ ≤ a₁ < a₂ ≤ ∞..............567. Euler ω-splines on the finite interval....................................................62Appendix A. Construction of Chebyshev splines.....................................68Appendix B. Construction of Zolotarev splines........................................70References.............................................................................................78

1991 Mathematics Subject Classification: Primary 41A17, 41A44; Secondary 26A15, 26A16, 26A51, 26D10, 46N10, 46N40, 47G10, 52A40, 58C30, 65D07, 65D25, 90C29, 90C26, 90C30.

EUDML-ID : urn:eudml:doc:271243
@book{bwmeta1.element.zamlynska-b088375d-6bca-45c1-8099-888401966b43,
     author = {Bagdasarov Sergey K.},
     title = {Kolmogorov problem in $W^rH^$\omega$[0,1]$ and extremal Zolotarev $\omega$-splines},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1998},
     zbl = {0928.41009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-b088375d-6bca-45c1-8099-888401966b43}
}
Bagdasarov Sergey K. Kolmogorov problem in $W^rH^ω[0,1]$ and extremal Zolotarev ω-splines. GDML_Books (1998),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-b088375d-6bca-45c1-8099-888401966b43/