AbstractThe main result of the paper, based on the Borsuk Antipodality Theorem, describes extremal functions of the Kolmogorov-Landau problem(*) , , ,for all 0 < m ≤ r, ξ ≤ a or ξ = (a+b)/2, all B > 0 and concave moduli of continuity ω on ℝ₊. It is shown that any extremal function of the problem (*) enjoys the following two characteristic properties. First, the function is extremal for the problem(**) , , h(ξ) = 0,for an appropriate choice of the kernel ψ with a finite number of sign changes on [ξ,b]. Second, the function equioscillates n = n(B,r,m,ω,ξ) ≥ r+1 times on the interval [a,b] between -B and B. This analogy with the properties of extremal functions in the linear case ω(t) = t of the problem (*) makes it natural to call these functions the Zolotarev and Chebyshev ω-splines.As in the linear case ω(t)=t, the solution of the problem (*) leads to the qualitative description of extremal functions and sharp additive inequalities for intermediate derivatives in the celebrated Kolmogorov problems on the infinite intervals I = ℝ or ℝ₊:, , , 0 < m ≤ r.
CONTENTS0. Introduction...........................................................................................51. Extrema of functionals in and perfect ω-splines................112. Auxiliary results...................................................................................223. Formulation of the main result.............................................................254. Proof of the main result.......................................................................325. The extrapolation problem...................................................................546. Maximization of functionals in , -∞ ≤ a₁ < a₂ ≤ ∞..............567. Euler ω-splines on the finite interval....................................................62Appendix A. Construction of Chebyshev splines.....................................68Appendix B. Construction of Zolotarev splines........................................70References.............................................................................................78
1991 Mathematics Subject Classification: Primary 41A17, 41A44; Secondary 26A15, 26A16, 26A51, 26D10, 46N10, 46N40, 47G10, 52A40, 58C30, 65D07, 65D25, 90C29, 90C26, 90C30.
@book{bwmeta1.element.zamlynska-b088375d-6bca-45c1-8099-888401966b43, author = {Bagdasarov Sergey K.}, title = {Kolmogorov problem in $W^rH^$\omega$[0,1]$ and extremal Zolotarev $\omega$-splines}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1998}, zbl = {0928.41009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-b088375d-6bca-45c1-8099-888401966b43} }
Bagdasarov Sergey K. Kolmogorov problem in $W^rH^ω[0,1]$ and extremal Zolotarev ω-splines. GDML_Books (1998), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-b088375d-6bca-45c1-8099-888401966b43/