CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations ............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations ............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, queues.......................................................... 26 3.2. queues........................................................................................................... 27 3.3. Order relationship between and queues...... 30 4. Bounds for queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for queues ........................................................................... 33 4.3. Bounds for queues............................................... 36 4.4. Application of the relations in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46
@book{bwmeta1.element.zamlynska-ab61af59-3723-469c-8922-6947e1025b8a, author = {Tomasz Rolski}, title = {Order relations in the set of probability distribution functions and their applications in queueing theory}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1976}, zbl = {0357.60025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-ab61af59-3723-469c-8922-6947e1025b8a} }
Tomasz Rolski. Order relations in the set of probability distribution functions and their applications in queueing theory. GDML_Books (1976), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-ab61af59-3723-469c-8922-6947e1025b8a/