Order relations in the set of probability distribution functions and their applications in queueing theory
Tomasz Rolski
GDML_Books, (1976), p.

CONTENTSIntroduction......................................................................................................................................... 51. n-Monotonic functions on (— ∞, ∞)........................................................................................... 62. Order relations in the set of probability distribution functions....................................................... 12 2.1. Preliminary concepts............................................................................................................ 12 2.2. Relations 1.n,2.n............................................................................................. 13 2.3. Extremal probability distribution functions........................................................................ 17 2.4. Relations 2.0,2.0............................................................................................. 18 2.5. Isotonic operators................................................................................................................. 22 2.6. Remarks about quasi-ordering relations in the set of random variables.................. 26 3. Order relationship between queueing systems................................................................. 26 3.1. Preliminary concepts, GI(x)/G(y)/1 queues.......................................................... 26 3.2. GI(x)/G/1 queues........................................................................................................... 27 3.3. Order relationship between GI(x)/M(y)/1 and M(x)/G(y)/1 queues...... 30 4. Bounds for GI(x)/G(y)/1 queues................................................................................ 32 4.1. Introduction............................................................................................................................. 32 4.2. Bounds for GI(x)/G(y)/1 queues ........................................................................... 33 4.3. Bounds for GI(x)/M(y)/1,M(x)/G(y)/1 queues............................................... 36 4.4. Application of the relations 1.n2.n in queues............................................ 37Appendix...................................................................................................................................................... 38References.................................................................................................................................................. 46

EUDML-ID : urn:eudml:doc:268532
@book{bwmeta1.element.zamlynska-ab61af59-3723-469c-8922-6947e1025b8a,
     author = {Tomasz Rolski},
     title = {Order relations in the set of probability distribution functions and their applications in queueing theory},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1976},
     zbl = {0357.60025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-ab61af59-3723-469c-8922-6947e1025b8a}
}
Tomasz Rolski. Order relations in the set of probability distribution functions and their applications in queueing theory. GDML_Books (1976),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-ab61af59-3723-469c-8922-6947e1025b8a/