Homological methods in fixed-point theory of multi-valued maps
Lech Górniewicz
GDML_Books, (1976), p.

CONTENTS  Introduction................................................................. 5I. HOMOLOGY  1. Preliminaries............................................................. 7  2. Maps in spaces of finite type............................................. 9  3. The Čech homology functor with compact carriers........................... 11  4. Vietoris maps............................................................. 13  5. Homology of open subsets of Euclidean spaces.............................. 14II. THE LEFSCHETZ NUMBER  1. The (ordinary) Lefschetz number........................................... 18  2. The generalized Lefschetz number.......................................... 20III. MULTI-VALUED MAPS  1. Upper semi-continuous and compact multi-valued mapB....................... 24  2. Admissible maps........................................................... 26  3. Homotopy and selectors.................................................... 9  4. Lefschetz maps............................................................ 30IV. ANB-s, AANR-B and w-AANB-s  1. ANR-s..................................................................... 32  2. Approximation Theorem..................................................... 33  3. AANR-B.................................................................... 34  4. w-AANR-s.................................................................. 36V. THE LEFSCHETZ FIXED-POINT THEOREM  1. The index of coincidence.................................................. 37  2. The Lefschetz Fixed-Point Theorem for open subsets in Rn............... 40  3. The Lefschetz Fixed-Point Theorem for AANR-s.............................. 41  4. Neighbourhood fixed-point property........................................ 45  5. The Lefschetz Fixed-Point Theorem for w-AANR-s............................ 46  6. Two consequences of the Lefschetz Fixed-Point Theorem..................... 47VI. FIXED-POINT PROPERTY OP THE TYCHONOFF CUBE  1. Almost fixed points....................................................... 51  2. Fixed-point property for infinite products................................ 51

EUDML-ID : urn:eudml:doc:268399
@book{bwmeta1.element.zamlynska-a7876602-92ed-4af8-a848-74505a8155d6,
     author = {Lech G\'orniewicz},
     title = {Homological methods in fixed-point theory of multi-valued maps},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1976},
     zbl = {0324.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-a7876602-92ed-4af8-a848-74505a8155d6}
}
Lech Górniewicz. Homological methods in fixed-point theory of multi-valued maps. GDML_Books (1976),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-a7876602-92ed-4af8-a848-74505a8155d6/