Torus embeddings, polyhedra, k*-actions and homology
Jerzy Jurkiewicz
GDML_Books, (1985), p.

CONTENTSIntroduction..............................................................................................51. General torus embeddings...................................................................7  1.1. Sets of subrings..............................................................................7  1.2. Complex of cones and torus embeddings. Basic properties and notation...............8  1.3. Jets of 1-p.s. at 0...........................................................................12  1.4. An application of torus embeddings. Desigularization of plane cusps by blowings up of the plane...............14  1.5. Some Gm-actions on torus embedding...................................182. Complex torus embeddings. Real and lion-negative parts..................20  2.1. Introduction...................................................................................20  2.2. The real non-negative part of the variety XΣ...........................21  2.3. Bijection of Xσ0 onto σ̆......................................................29  2.4. Real part of XΣ. Reflexions......................................................353. Projective torus embeddings..............................................................37  3.1. Polyhedra......................................................................................37  3.2. Morse function...............................................................................41  3.3. Filtrations, cycles of orbits and projectivity.....................................464. Homology............................................................................................50  4.1. Poincaré polynomial......................................................................50  4.2. Chow ring and l-adic cohomology..................................................51  4.3. Cohomology ring of XΣ(R) with coefficients in Z/2Z..................52  4.4. Orientation.....................................................................................55  4.5. The 2-dimensional case, homology with integral coefficients.........56References.............................................................................................62Index.......................................................................................................64

EUDML-ID : urn:eudml:doc:268485
@book{bwmeta1.element.zamlynska-a0403a66-3cf0-49f0-8d8d-8c007d58ab62,
     author = {Jerzy Jurkiewicz},
     title = {Torus embeddings, polyhedra, k*-actions and homology},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1985},
     zbl = {0599.14014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-a0403a66-3cf0-49f0-8d8d-8c007d58ab62}
}
Jerzy Jurkiewicz. Torus embeddings, polyhedra, k*-actions and homology. GDML_Books (1985),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-a0403a66-3cf0-49f0-8d8d-8c007d58ab62/