CONTENTS Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17 1. The problem................................................................................................................................17 2. Existence of solutions..................................................................................................................18 3. Uniqueness of the solution...........................................................................................................21 4. Continuous solutions...................................................................................................................23 5. Continuous dependence of the solution on the boundary data...................................................25III. Noncharacteristic boundary value problem...................................................................................26 1. The problem................................................................................................................................26 2. Local solutions of the problem.....................................................................................................27 3. Extension of the local solution.....................................................................................................30IV. Some problems for ordinary differential equations........................................................................32 1. Multipoint problem.......................................................................................................................32 ;1.1. The problem..........................................................................................................................32 ;1.2. Solution of the problem.........................................................................................................33  2. Polarographic equation...............................................................................................................35 ;2.1. The Cauchy problem.............................................................................................................35 ;2.2. Continuous dependence of the solution on the initial data....................................................39 ;2.3. The multipoint problem..........................................................................................................39V. Further applications of the derivatives of noninteger order...........................................................40 1. An application to Mikusi/nski's operator theory............................................................................40 2. Integral representation of analytic functions................................................................................42References........................................................................................................................................45
1991 Mathematics Subject Classification: 26A33, 26B99, 34A99, 34B99, 35D99, 35L99, 45B05, 45D05, 45E10, 45Gxx, 45P05, 47Gxx.
@book{bwmeta1.element.zamlynska-a013d549-e9d1-4ed8-a35a-e8314cb93cf3, author = {Marek W. Michalski}, title = {Derivatives of noninteger order and their applications}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1993}, zbl = {0880.26007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-a013d549-e9d1-4ed8-a35a-e8314cb93cf3} }
Marek W. Michalski. Derivatives of noninteger order and their applications. GDML_Books (1993), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-a013d549-e9d1-4ed8-a35a-e8314cb93cf3/