Foundations of Vietoris homology theory with applications to non-compact spaces
Robert E. Reed
GDML_Books, (1980), p.

CONTENTSPreface...................................................................................................................................... 5I. Introduction............................................................................................................................ 7II. Simple chains 2.1. Simplexes............................................................................................................ 12 2.2. Chains........................................................................................................................... 13 2.3. Boundary operator. Cycles and boundaries.......................................................... 15 2.4. Join operator................................................................................................................ 15 2.5. ε-simplexes and ε-chains........................................................................................... 16III. Sequential chains 3.1. Sequences and subsequences...................................................................... 17 3.2. Sequential chains....................................................................................................... 18 3.3. Infinite chains. General homology groups............................................................. 18 3.4. Infinite chains in subspaces..................................................................................... 19 3.5. True cycles. Vietoris homology groups................................................................... 21 3.6. Subsequences of infinite chains............................................................................. 22 3.7. A condition for homology of infinite cycles.............................................................. 24IV. Functions, mappings, and null translations4.1. Homomorphisms of simple chains induced by functions...................................... 25 4.2. Homomorphisms of sequential chains induced by functions........................... 25 4.3. Homomorphisms of ε-chains induced by functions............................................ 26 4.4. Homomorphisms of infinite chains induced by maps........................................ 27 4.5. Topological invariance of the central and Vietoris homology groups............... 28 4.6. Non-equivalence of the general and Vietoris homology groups....................... 30 4.7. The homotopy theorem.............................................................................................. 31 4.8. Null translations.......................................................................................................... 34V. The Phragmen-Brouwer theorem 5.1. Introduction.......................................................................................................... 37 5.2. The Phragmen Brouwer theorem for non-compact spaces............................... 39VI. The Alexandroff dimension theorem 6.1. Introduction.......................................................................................................... 40 6.2. Compactly dimensioned spaces............................................................................. 41 6.3. The generalized Alexandroff theorem..................................................................... 43Bibliography.............................................................................................................................. 46

EUDML-ID : urn:eudml:doc:268548
@book{bwmeta1.element.zamlynska-8f369e96-b1eb-4ec9-99e2-8c366367a5a4,
     author = {Robert E. Reed},
     title = {Foundations of Vietoris homology theory with applications to non-compact spaces},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1980},
     zbl = {0442.55006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-8f369e96-b1eb-4ec9-99e2-8c366367a5a4}
}
Robert E. Reed. Foundations of Vietoris homology theory with applications to non-compact spaces. GDML_Books (1980),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-8f369e96-b1eb-4ec9-99e2-8c366367a5a4/