CONTENTSIntroduction............................................................................51. The main ideas and results................................................62. -invariant subsets of .........................223. Reduction to germs of differential 1-forms........................354. The case k ≥ 2n-3. Proof of Theorem A...........................445. The case n = 3, k = 2.......................................................46Appendix. Connections with control theory...........................59List of symbols......................................................................61References..........................................................................63References to the Appendix.................................................63
@book{bwmeta1.element.zamlynska-8b70ee21-da72-4317-ba4a-467e480e04e2,
author = {Bronis\l aw Jakubczyk and Feliks Przytycki},
title = {Singularities of k-tuples of vector fields},
series = {GDML\_Books},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
address = {Warszawa},
year = {1984},
zbl = {0565.58007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-8b70ee21-da72-4317-ba4a-467e480e04e2}
}
Bronisław Jakubczyk; Feliks Przytycki. Singularities of k-tuples of vector fields. GDML_Books (1984), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-8b70ee21-da72-4317-ba4a-467e480e04e2/