CONTENTSIntroduction............................................................................................................................5 I. Special functions of quasiconformal theory.....................................................................10 1. Introduction.................................................................................................................10 2. The distortion function .....................................................................................11 3. Quasisymmetric functions............................................................................................19 4. Functional identities for special functions....................................................................27 5. Applications..................................................................................................................38 II. Quasihomographies of a circle.......................................................................................42 1. Introduction..................................................................................................................42 2. Introduction to quasihomographies..............................................................................42 3. Quasihomographies and quasisymmetric functions on the real line.............................45 4. Quasihomographies and quasisymmetric functions on the unit circle...........................48 5. Quasisymmetric functions as quasihomographies.........................................................51 III. Distortion theorems for quasihomographies....................................................................57 1. Introduction...................................................................................................................57 2. Similarities.....................................................................................................................57 3. Distortion theorems.......................................................................................................60 4. Normal and compact families of quasihomographies.....................................................67 5. Topological characterization of quasihomographies.......................................................69 IV. Quasihomographies of a Jordan curve ...........................................................................72 1. Introduction...................................................................................................................72 2. Harmonic cross-ratio.....................................................................................................72 3. One-dimensional quasiconformal mappings..................................................................76 4. Complete boundary transformations.............................................................................78 5. Quasicircles...................................................................................................................80 V. The universal Teichmüller space.......................................................................................84 1. Introduction....................................................................................................................84 2. The universal Teichmüller space of a circle...................................................................85 3. The universal Teichmüller space of an oriented Jordan curve........................................87 4. The space of normalized quasihomographies................................................................91 5. A linearization formula....................................................................................................94Acknowledgements...................................................................................................................97References...............................................................................................................................98
1991 Mathematics Subject Classification: 32H10, 42B10, 32A07, 46E22.
@book{bwmeta1.element.zamlynska-765b3fc4-dbf3-425f-b31f-5f4b9643c2f1, author = {Zaj\k ac J\'ozef}, title = {Quasihomographies in the theory of Teichm\"uller spaces}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1996}, zbl = {0877.30021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-765b3fc4-dbf3-425f-b31f-5f4b9643c2f1} }
Zając Józef. Quasihomographies in the theory of Teichmüller spaces. GDML_Books (1996), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-765b3fc4-dbf3-425f-b31f-5f4b9643c2f1/