Bilinear random integrals
Jan Rosiński
GDML_Books, (1987), p.

CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7  1. Infinitely divisible probability measures on Banach spaces..........................................................................................7  2. Random measures......................................................................................................................................................9III. Bilinear random integral...............................................................................................................................................11  1. Definition and necessary conditions for the existence of a random integral...............................................................11  2. Topology in the space of M-integrable functions........................................................................................................17  3. Characterization of M-integrable functions.................................................................................................................21  4. Approximation by simple functions and some contraction principles..........................................................................33  5. Stable symmetric random integrals............................................................................................................................42IV. Random integrals of Banach space valued functions with respect to real valued random measures..........................45  1. Immediate corollaries from a general theory of random integrals and examples........................................................45  2. Gaussian and stable random integrals......................................................................................................................51  3. Comparison theorem and some applications.............................................................................................................62References......................................................................................................................................................................70

EUDML-ID : urn:eudml:doc:268389
@book{bwmeta1.element.zamlynska-75305a1b-9ec4-4483-8a24-3cd1946045a1,
     author = {Jan Rosi\'nski},
     title = {Bilinear random integrals},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1987},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-75305a1b-9ec4-4483-8a24-3cd1946045a1}
}
Jan Rosiński. Bilinear random integrals. GDML_Books (1987),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-75305a1b-9ec4-4483-8a24-3cd1946045a1/