Random matroids
Kordecki Wojciech
GDML_Books, (1997), p.

CONTENTS1. Introduction.............................................................................52. Matroids..................................................................................6  2.1. Notations and basic properties...........................................6  2.2. Gaussian coefficients.......................................................10  2.3. Projective geometries.......................................................11  2.4. Special classes................................................................143. Probabilistic tools..................................................................15  3.1. Poisson convergence.......................................................15  3.2 Normal convergence.........................................................17  3.3. Markov processes on finite lattices..................................184. Random matroids - general approach..................................19  4.1. Definitions........................................................................19  4.2. Rank.................................................................................21  4.3. Duality..............................................................................235. Random projective geometries - combinatorial results..........26  5.1. Distribution of rank...........................................................26  5.2. Fullsubspaces - expectation and variance.......................30  5.3. Submatroids of a given type............................................336. Random projective geometries - limit theorems....................33  6.1. Rank of random subspaces.............................................33  6.2. Small submatroids...........................................................38  6.3. Full subspaces................................................................43  6.4. Related results................................................................467. Problems and conclusions....................................................49Appendix: tables.......................................................................49  1. Gaussian coefficients.........................................................49  2. Probabilities P(r).........................................................51  3. Parameters of X..................................................................53Bibliography..............................................................................54

1991 Mathematics Subject Classification: Primary 05B35; Secondary 60C05.

EUDML-ID : urn:eudml:doc:271749
@book{bwmeta1.element.zamlynska-6dd62306-e0c3-4688-a60e-f43a418e2c94,
     author = {Kordecki Wojciech},
     title = {Random matroids},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-6dd62306-e0c3-4688-a60e-f43a418e2c94}
}
Kordecki Wojciech. Random matroids. GDML_Books (1997),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-6dd62306-e0c3-4688-a60e-f43a418e2c94/