CONTENTS1. Introduction.............................................................................52. Matroids..................................................................................6 2.1. Notations and basic properties...........................................6 2.2. Gaussian coefficients.......................................................10 2.3. Projective geometries.......................................................11 2.4. Special classes................................................................143. Probabilistic tools..................................................................15 3.1. Poisson convergence.......................................................15 3.2 Normal convergence.........................................................17 3.3. Markov processes on finite lattices..................................184. Random matroids - general approach..................................19 4.1. Definitions........................................................................19 4.2. Rank.................................................................................21 4.3. Duality..............................................................................235. Random projective geometries - combinatorial results..........26 5.1. Distribution of rank...........................................................26 5.2. Fullsubspaces - expectation and variance.......................30 5.3. Submatroids of a given type............................................336. Random projective geometries - limit theorems....................33 6.1. Rank of random subspaces.............................................33 6.2. Small submatroids...........................................................38 6.3. Full subspaces................................................................43 6.4. Related results................................................................467. Problems and conclusions....................................................49Appendix: tables.......................................................................49 1. Gaussian coefficients.........................................................49 2. Probabilities .........................................................51 3. Parameters of X..................................................................53Bibliography..............................................................................54
1991 Mathematics Subject Classification: Primary 05B35; Secondary 60C05.
@book{bwmeta1.element.zamlynska-6dd62306-e0c3-4688-a60e-f43a418e2c94, author = {Kordecki Wojciech}, title = {Random matroids}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1997}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-6dd62306-e0c3-4688-a60e-f43a418e2c94} }
Kordecki Wojciech. Random matroids. GDML_Books (1997), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-6dd62306-e0c3-4688-a60e-f43a418e2c94/