Limit theorems for sums of dependent random vectors in Rd
Andrzej Kłopotowski
GDML_Books, (1977), p.

CONTENTSIntroduction.......................................................................................................................................................................... 5 I. Infinitely divisible probability measures on Rd....................................................................................... 6 II. The classical limit theorems for sums of independent random vectors................................................ 14 III. Convergence in law to ℒ (a, A, µ) for sums of dependent random vectors.......... 21 IV. Convergence in law to l (a, A, ν) for sums of dependent random vectors............ 84 V. Convergence in law to K(m, A, ϰ) for sums of dependent random vectors with finite variances............................................................................................................................................... 47 VI. Particular cases of limit distributions........................................................................................................... 40 VII. Another method of conditioning.................................................................................................................... 57References........................................................................................................................................................................... 58

EUDML-ID : urn:eudml:doc:268612
@book{bwmeta1.element.zamlynska-63ebc9f6-4653-4895-8e3a-edde3348fad7,
     author = {Andrzej K\l opotowski},
     title = {Limit theorems for sums of dependent random vectors in $R^d$
            },
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1977},
     zbl = {0369.60029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-63ebc9f6-4653-4895-8e3a-edde3348fad7}
}
Andrzej Kłopotowski. Limit theorems for sums of dependent random vectors in $R^d$
            . GDML_Books (1977),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-63ebc9f6-4653-4895-8e3a-edde3348fad7/