CONTENTSIntroduction.......................................................................................................................................................................... 5 I. Infinitely divisible probability measures on ....................................................................................... 6 II. The classical limit theorems for sums of independent random vectors................................................ 14 III. Convergence in law to ℒ (, A, µ) for sums of dependent random vectors.......... 21 IV. Convergence in law to l (, A, ν) for sums of dependent random vectors............ 84 V. Convergence in law to K(, A, ϰ) for sums of dependent random vectors with finite variances............................................................................................................................................... 47 VI. Particular cases of limit distributions........................................................................................................... 40 VII. Another method of conditioning.................................................................................................................... 57References........................................................................................................................................................................... 58
@book{bwmeta1.element.zamlynska-63ebc9f6-4653-4895-8e3a-edde3348fad7, author = {Andrzej K\l opotowski}, title = {Limit theorems for sums of dependent random vectors in $R^d$ }, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1977}, zbl = {0369.60029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-63ebc9f6-4653-4895-8e3a-edde3348fad7} }
Andrzej Kłopotowski. Limit theorems for sums of dependent random vectors in $R^d$ . GDML_Books (1977), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-63ebc9f6-4653-4895-8e3a-edde3348fad7/