AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, , s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, , α > 0, or , β > 0, and . We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let , β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, , a > 0, the corresponding embedding becomes compact and we can study its entropy numbers. We apply our result to estimate eigenvalues of the compact operator B = b₂ ∘ b(·,D) ∘ b₁ acting in some Lₚ space, where b(·,D) belongs to some Hörmander class , ϰ > 0, 0 ≤ γ < 1, and b₁, b₂ are in (weighted) logarithmic Lebesgue spaces on ℝⁿ. Another application concerns the study of “negative spectra” via the Birman-Schwinger principle. The last part shows possible generalisations of the spaces with ℝⁿ replaced by a space of homogeneous type (X,δ,μ).
CONTENTSIntroduction.........................................................................................51. Non-limiting embeddings - a short review........................................82. The spaces Lₚ(log L)ₐ on ℝⁿ.........................................................12 2.1. The spaces Lₚ(log L)ₐ(Ω) and ................12 2.2. The spaces , a > 0...................................20 2.3. The spaces Lₚ(log L)ₐ(ℝⁿ), a > 0.............................................27 2.4. Hölder inequalities...................................................................32 2.5. Examples.................................................................................353. Entropy numbers, limiting embeddings.........................................374. Applications..................................................................................47 4.1. Eigenvalue distribution............................................................47 4.2. Negative spectrum...................................................................535. Homogeneous spaces..................................................................55References.......................................................................................58
1991 Mathematics Subject Classification: 46E35, 46E30, 41A46, 35P15, 35P20, 35J70.
@book{bwmeta1.element.zamlynska-51e7c367-d257-4b20-a083-ceddb21ff33c, author = {Haroske Dorothee}, title = {Some logarithmic function spaces, entropy numbers, applications to spectral theory}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1998}, zbl = {0906.46027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-51e7c367-d257-4b20-a083-ceddb21ff33c} }
Haroske Dorothee. Some logarithmic function spaces, entropy numbers, applications to spectral theory. GDML_Books (1998), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-51e7c367-d257-4b20-a083-ceddb21ff33c/