Some logarithmic function spaces, entropy numbers, applications to spectral theory
Haroske Dorothee
GDML_Books, (1998), p.

AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, id:Hqs(w(x),)L(), s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, w(x)=xα, α > 0, or w(x)=logβx, β > 0, and x=(2+|x|²)1/2. We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let w(x)=logβx, β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, L(logL)-a(), a > 0, the corresponding embedding becomes compact and we can study its entropy numbers. We apply our result to estimate eigenvalues of the compact operator B = b₂ ∘ b(·,D) ∘ b₁ acting in some Lₚ space, where b(·,D) belongs to some Hörmander class Ψ1,γ-ϰ, ϰ > 0, 0 ≤ γ < 1, and b₁, b₂ are in (weighted) logarithmic Lebesgue spaces on ℝⁿ. Another application concerns the study of “negative spectra” via the Birman-Schwinger principle. The last part shows possible generalisations of the spaces L(logL)-a() with ℝⁿ replaced by a space of homogeneous type (X,δ,μ).

CONTENTSIntroduction.........................................................................................51. Non-limiting embeddings - a short review........................................82. The spaces Lₚ(log L)ₐ on ℝⁿ.........................................................12  2.1. The spaces Lₚ(log L)ₐ(Ω) and Lp,q(logL)(Ω)................12  2.2. The spaces L(logL)-a(), a > 0...................................20  2.3. The spaces Lₚ(log L)ₐ(ℝⁿ), a > 0.............................................27  2.4. Hölder inequalities...................................................................32  2.5. Examples.................................................................................353. Entropy numbers, limiting embeddings.........................................374. Applications..................................................................................47  4.1. Eigenvalue distribution............................................................47  4.2. Negative spectrum...................................................................535. Homogeneous spaces..................................................................55References.......................................................................................58

1991 Mathematics Subject Classification: 46E35, 46E30, 41A46, 35P15, 35P20, 35J70.

EUDML-ID : urn:eudml:doc:271248
@book{bwmeta1.element.zamlynska-51e7c367-d257-4b20-a083-ceddb21ff33c,
     author = {Haroske Dorothee},
     title = {Some logarithmic function spaces, entropy numbers, applications to spectral theory},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1998},
     zbl = {0906.46027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-51e7c367-d257-4b20-a083-ceddb21ff33c}
}
Haroske Dorothee. Some logarithmic function spaces, entropy numbers, applications to spectral theory. GDML_Books (1998),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-51e7c367-d257-4b20-a083-ceddb21ff33c/