CONTENTS Introduction.............................................................................................................................................5 I. Preliminaries.........................................................................................................................................7 1. A review of classical results in the theory of Laplace integra............................................................7 2. Boundary values of holomorphic functions......................................................................................10 2.1. Distributions as boundary values of holomorphic functions.........................................................10 2.2. Hyperfunctions in one variable....................................................................................................12 3. Mellin analytic functionals, Mellin hyperfunctions and Mellin distributions.........................................14 4. Laplace distributions.........................................................................................................................18 4.1. Convolution of Laplace distributions.............................................................................................21 5. Ecalle distributions.............................................................................................................................23 5.1. Alien derivatives of Ecalle distributions.........................................................................................24 6. Paley-Wiener type theorem for Mellin analytic functionals.................................................................25 6.1. Phragmén-Lindelöf type theorems................................................................................................29 7. The cut-off functions and their Mellin transforms...............................................................................30 8. Modified Cauchy transformation in dimension 1.................................................................................31 II. The theory of generalized analytic functions..........................................................................................33 9. Definition of a generalized analytic function........................................................................................34 10. The Mellin transform of a generalized analytic function.....................................................................35 11. Characterization of GAFs in terms of Mellin transforms.....................................................................37 12. The Borel and Taylor transformations in the class of GAFs..............................................................40 13. Operations on generalized analytic functions...................................................................................40 14. Resurgent functions.........................................................................................................................44 14.1. Alien derivatives of resurgent functions......................................................................................46 14.2. Taylor-Fourier representation of resurgent functions..................................................................47 III. Applications to singular linear differential equations..............................................................................48 15. Special functions as generalized analytic functions...........................................................................48 16. Fuchsian type ODEs with generalized analytic coefficients................................................................52 17. Fuchsian type PDEs with "constant" coefficients................................................................................58 18. GAFs in several variables..................................................................................................................73 19. Fuchsian type PDEs with generalized analytic coefficients................................................................78 Appendices.................................................................................................................................................84 I. The symbol of a distribution in the sense of A. Weinstein. Conormal distributions...................................84 II. Nonlinear singular differential equations.................................................................................................88 1. The case of ordinary differential equations..........................................................................................88 2. The case of partial differential equations.............................................................................................93 References...................................................................................................................................................94 Symbol index.................................................................................................................................................97 Subject index................................................................................................................................................99
1991 Mathematics Subject Classification: 34A20, 35A20, 35C20, 46F12, 30D15, 46F15
@book{bwmeta1.element.zamlynska-50e899ca-8c56-45dd-bd25-95e339b7edec, author = {Bogdan Ziemian}, title = {Generalized analytic functions with applications to singular ordinary and partial differential equations}, series = {GDML\_Books}, year = {1996}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-50e899ca-8c56-45dd-bd25-95e339b7edec} }
Bogdan Ziemian. Generalized analytic functions with applications to singular ordinary and partial differential equations. GDML_Books (1996), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-50e899ca-8c56-45dd-bd25-95e339b7edec/